1. | Anna Tupitsina, Jan-Henri Montonen, Jani Alho, Paula Immonen, Mika Lauren, Pia Lindh and Tuomo Lindh, “Simulation tool for dimensioning power train of hybrid working machine”, pp. 143-158 |
|
DOI forward links to this article:
[1] Mika Lauren, Giota Goswami, Anna Tupitsina, Suraj Jaiswal, Tuomo Lindh and Jussi Sopanen (2021), doi:10.3390/machines10010026 | [2] Shruti Singh, Ilya Petrov, Juha Pyrhonen and Peter Sergeant (2022), doi:10.1109/ICEM51905.2022.9910846 | [3] Mika Lauren, Giota Goswami, Tuomo Lindh and Jussi Sopanen (2024), doi:10.1177/09544070241272773 |
|
2. | Simon Christensen, Xuerong Li and Shaoping Bai, “Modeling and Analysis of Physical Human-Robot Interaction of an Upper Body Exoskeleton in Assistive Applications”, pp. 159-172 |
|
DOI forward links to this article:
|
3. | Sihan Gao, Lars Christian Gansel, Guoyuan Li and Houxiang Zhang, “An Integrated Approach to Modelling Fish Cage Response in the Flow”, pp. 173-184 |
|
DOI forward links to this article:
|
4. | Mishiga Vallabhan, Jose Matias and Christian Holden, “Feedforward, Cascade and Model Predictive Control Algorithms for De-Oiling Hydrocyclones: Simulation Study”, pp. 185-195 |
|
DOI forward links to this article:
[1] Mishiga Vallabhan K G, Christian Holden and Sigurd Skogestad (2022), doi:10.2118/209576-PA | [2] Jaroslav Hlava and Shereen Abouelazayem (2022), doi:10.3390/s22082847 | [3] Stefan Jespersen, Zhenyu Yang, Dennis Severin Hansen, Mahsa Kashani and Biao Huang (2023), doi:10.3390/en16207095 | [4] Stefan Jespersen, Mahsa Kashani and Zhenyu Yang (2023), doi:10.1109/CoDIT58514.2023.10284508 | [5] Kacper Filip Pajuro, Lasse Bonde Hansen, Michael Keenan Odena, Stefan Jespersen and Zhenyu Yang (2023), doi:10.1109/IECON51785.2023.10311791 | [6] Stefan Jespersen, Dennis Severin Hansen, Mads Valentin Bram, Mahsa Kashani and Zhenyu Yang (2024), doi:10.1016/j.ifacol.2024.08.424 |
|
5. | Martinius Knudsen, Sverre Hendseth, Gunnar Tufte and Axel Sandvig, “Model-Free All-Source-All-Destination Learning as a Model for Biological Reactive Control”, pp. 197-204 |
|
|
1. | Hans K.R. Holen, Alexander M. Sjøberg and Olav Egeland, “Estimation of Ship-Deck Motion using LIDAR,Gyroscopes and Cameras”, pp. 99-112 |
|
|
2. | Konrad J. Jensen, Morten K. Ebbesen and Michael R. Hansen, “Development of 3D Anti-Swing Control for Hydraulic Knuckle Boom Crane”, pp. 113-129 |
|
DOI forward links to this article:
[1] Konrad Johan Jensen, Morten Kjeld Ebbesen and Michael Rygaard Hansen (2022), doi:10.3390/robotics11020034 | [2] Zhaopeng Ren, Zhe Huang, Tingqi Zhao, Shenghai Wang, Yuqing Sun, Haiquan Chen and Nan Fang (2024), doi:10.2478/pomr-2024-0019 | [3] Yinglong Chen, Yue Zhao, Jia Wang, Shuangxi Yang, Siru Che, Fujun Song and Xinyu Yang (2023), doi:10.1109/FPM57590.2023.10565444 |
|
3. | Jani Alho, Tuomo Lindh, Pasi Peltoniemi, Jan-Henri Montonen, Andrey Lana, Antti Pinomaa and Olli Pyrhönen, “Optimal control of powertrain and energy balance to recover an equipment fault on a marine vessel”, pp. 131-141 |
|
|
1. | Alberto Maximiliano Crescitelli, Lars Christian Gansel and Houxiang Zhang, “NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep neural networks”, pp. 1-16 |
|
DOI forward links to this article:
[1] Jennifer L. Bell, Randy Mandel, Andrew S. Brainard, Jon Altschuld and Richard J. Wenning (2022), doi:10.1002/ieam.4622 | [2] K Banno, H Kaland, AM Crescitelli, SA Tuene, GH Aas and LC Gansel (2022), doi:10.3354/aei00432 | [3] Ricardo J. M. Veiga, Inigo E. Ochoa, Adela Belackova, Luis Bentes, Joao P. Silva, Jorge Semiao and Joao M. F. Rodrigues (2022), doi:10.3390/app12125910 | [4] Alexa Sugpatan Abangan, Dorothee Kopp and Robin Faillettaz (2023), doi:10.3389/fmars.2023.1010761 | [5] M Paiano, S Martina, C Giannelli and F Caruso (2024), doi:10.1088/2632-2153/ad65b5 | [6] Bjorn Christian Weinbach, Rajendra Akerkar, Marianne Nilsen and Reza Arghandeh (2024), doi:10.1016/j.ecoinf.2024.102966 |
|
2. | Robert Skulstad, Guoyuan Li, Thor I. Fossen, Tongtong Wang and Houxiang Zhang, “A Co-operative Hybrid Model For Ship Motion Prediction”, pp. 17-26 |
|
DOI forward links to this article:
[1] Motoyasu Kanazawa, Robert Skulstad, Guoyuan Li, Lars Ivar Hatledal and Houxiang Zhang (2021), doi:10.1109/JSEN.2021.3119069 | [2] Motoyasu Kanazawa, Robert Skulstad, Tongtong Wang, Guoyuan Li, Lars Ivar Hatledal and Houxiang Zhang (2022), doi:10.1109/JSEN.2022.3171036 | [3] Motoyasu Kanazawa, Lars Ivar Hatledal, Guoyuan Li and Houxiang Zhang (2022), doi:10.1007/978-3-031-12429-7_13 | [4] Motoyasu Kanazawa, Tongtong Wang, Robert Skulstad, Guoyuan Li and Houxiang Zhang (2022), doi:10.1016/j.oceaneng.2022.112998 | [5] Gianluca Antonelli, Stefano Chiaverini and Paolo Di Lillo (2022), doi:10.1007/s11071-022-08192-x | [6] Wenzhuo Shi, Zimeng Guo, Zixiang Dai, Shizhen Li and Meng Chen (2024), doi:10.3390/jmse12081413 | [7] Peng QIN, Jianjun LUO, Weihua MA and Liming WU (2024), doi:10.1051/jnwpu/20244230377 |
|
3. | Fredrik Bengtsson and Torsten Wik, “Finding feedforward configurations using gramian based interaction measures”, pp. 27-35 |
|
DOI forward links to this article:
|